一种图像重建的方法和装置的制造方法-k8凯发

文档序号:10657015阅读:501来源:国知局
一种图像重建的方法和装置的制造方法
【专利摘要】本申请提供一种图像重建的方法和装置,该方法包括:获得连续进床扫描模式下的扫描数据;将实际晶体虚拟对应一个以上虚拟晶体,根据所述扫描数据获得所述虚拟晶体所在响应线的延迟随机符合数据;利用实际晶体的晶体接收效率对所述延迟随机符合数据进行去噪声处理,得到去噪声处理后的随机符合数据;利用去噪声处理后的随机符合数据进行图像重建。本申请实施例中,可以在图像重建时使用满足图像重建要求的随机符合数据,实现了对延迟随机符合数据去噪声的效果,从而使得参与图像重建的数据更加准确,图像重建的质量得到提高。
【专利说明】
-种图像重建的方法和装置
技术领域
[0001] 本申请设及医疗技术领域,特别设及一种图像重建的方法和装置。
【背景技术】
[0002] 临床检查影像技术可w包括多种技术,其中一种技术为:在被检体(例如,患者)的 体内注入某种物质(一般是生物生命代谢中必须的物质,如:葡萄糖、蛋白质等),并在该物 质上标记短寿命的放射性核素(如18f,11c等),然后让被检体躺在扫描床上,并在探测装置 中接受扫描。在扫描过程中,被检体中的放射性核素可w产生正电子煙灭事件,该正电子煙 灭事件可w产生丫光子,探测装置需要接收该丫光子,并根据丫光子的接收信息(如接收时 间、接收位置等)进行分析,w获得来自于同一正电子煙灭事件的丫光子,此为探测到符合 事件。探测装置可w根据符合事件的信息重建出被检体的体内图像,该图像可w反映生命 代谢活动的情况,进而达到诊断被检体的目的。
[0003] 由于探测装置的分析存在误差,图像重建所依据的数据可能包括噪声数据,运些 噪声数据可能将非符合事件确定为符合事件,因此会影响图像重建的质量。

【发明内容】

[0004] 本申请实施例提供一种图像重建的方法,应用于包括多个实际晶体的医疗设备, 该方法包括:
[0005] 获得连续进床扫描模式下的扫描数据;
[0006] 将实际晶体虚拟对应一个w上虚拟晶体,根据所述扫描数据获得所述虚拟晶体所 在响应线的延迟随机符合数据;
[0007] 利用实际晶体的晶体接收效率对所述延迟随机符合数据进行去噪声处理,得到去 噪声处理后的随机符合数据;
[0008] 利用去噪声处理后的随机符合数据进行图像重建。
[0009] 本申请实施例提供一种图像重建的装置,应用于包括多个实际晶体的医疗设备, 该装置包括:
[0010] 获得模块,用于获得连续进床扫描模式下的扫描数据;将实际晶体虚拟对应一个 w上虚拟晶体,根据所述扫描数据获得所述虚拟晶体所在响应线的延迟随机符合数据;
[0011] 处理模块,用于利用实际晶体的晶体接收效率对所述延迟随机符合数据进行去噪 声处理,得到去噪声处理后的随机符合数据;
[0012] 重建模块,用于利用去噪声处理后的随机符合数据进行图像重建。
[0013] 基于上述技术方案,本申请实施例中,针对不满足图像重建要求的延迟随机符合 数据,可w使用晶体接收效率对延迟随机符合数据进行去噪声处理,继而使得去噪声处理 后的随机符合数据可w满足图像重建要求,从而可w在图像重建时使用满足图像重建要求 的随机符合数据,实现对延迟随机符合数据去噪声的效果,从而使得参与图像重建的数据 更加准确,图像重建的质量得到提高。
【附图说明】
[0014]为了更加清楚地说明本发明实施例或者现有技术中的技术方案,下面将对本发明 实施例或者现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的 附图仅仅是本发明中记载的一些实施例,对于本领域普通技术人员来讲,还可w根据运些 附图获得其它的附图。
[001引图1是本申请一示例性实施例示出的一种弦采集扫描数据场景示意图;
[0016] 图2(a)和2(b)是本申请一示例性实施例示出的一种即时弦图和延迟弦图示意图;
[0017] 图3是本申请一示例性实施例示出的一种阳t连续进床扫描场景示意图;
[0018] 图4是本申请一示例性实施例示出的一种pet系统的立体示意图;
[0019]图5是本申请一示例性实施例示出的一种虚拟阳!'系统的示意图;
[0020] 图6是本申请一示例性实施例示出的一种晶体环的示意图;
[0021] 图7是本申请一示例性实施例示出的一种单光子累加示意图;
[0022] 图8是本申请一示例性实施例示出的一种扫描过程示意图;
[0023] 图9是本申请一示例性实施例示出的一种响应线扫描时间示意图;
[0024] 图10是本申请一示例性实施例示出的一种响应线扫描晶体示意图;
[0025] 图11是本申请一示例性实施例示出的两个连续晶体块的示意图;
[0026] 图12是本申请一示例性实施例示出的一种图像重建的方法流程图;
[0027] 图13是本申请一示例性实施例示出的一种扫描场景示意图;
[0028] 图14是本申请一示例性实施例示出的一种医疗设备的结构图;
[0029] 图15是本申请一示例性实施例示出的一种图像重建的装置的结构示意图。
【具体实施方式】
[0030] 在本发明使用的术语仅仅是出于描述特定实施例的目的,而非限制本发明。本发 明和权利要求书中所使用的单数形式的"一种"、"所述"和"该"也旨在包括多数形式,除非 上下文清楚地表示其它含义。还应当理解,本文中使用的术语"和/或"是指包含一个或多个 相关联的列出项目的任何或所有可能组合。
[0031] 应当理解,尽管在本发明可能采用术语第一、第二、第=等来描述各种信息,但运 些信息不应限于运些术语。运些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离 本发明范围的情况下,第一信息也可w被称为第二信息,类似地,第二信息也可w被称为第 一信息。取决于语境,此外,所使用的词语"如果"可w被解释成为"在……时"或"当……时" 或"响应于确定"。
[0032] 本申请实施例中提供了一种图像重建的方法,该方法可w用于对被检体进行连续 进床扫描模式中的图像重建的过程,且该方法可w应用于医疗设备上。该医疗设备可w如 ct(computed tomogra曲y,电子计算机断层扫描)系统、pet(pc)sitron 血ission computed tomogra地y,正电子发射型计算机断层显像)系统、dr(dig;ual radiogra地y,数字放射显 影系统)、mri (ma即etic resonance imaging,磁共振成像系统)等。如下wpet系统为例来 描述该方法,可w理解的是,该方法也可w应用于其它系统。其中,pet系统的扫描模式包括 分床位扫描模式w及连续进床扫描模式。分床位扫描模式是指:被检体躺在扫描床上,当扫 描床运动到某一位置,进行一段时间的扫描,扫描完成后,扫描床运动到下一个位置再进行 一段时间的扫描。连续进床扫描模式是指:被检体躺在扫描床上,且扫描床按照一个固定速 率运动,并进行持续扫描。
[0033] 在根据被检体的扫描数据进行图像重建的过程中,扫描数据可能包括噪声数据, 而该噪声数据中可能包含随机符合数据。对于随机符合数据,在图像重建中需要使用,而对 于其它噪声数据,在图像重建中不需要使用。因此,为了使参与图像重建的数据更加准确, 需要得到准确的随机符合数据。
[0034] 在一个例子中,可w从扫描数据中获得符合数据。如图1所示,如果在一个符合时 间窗内,实际晶体a和实际晶体b(后续过程对实际晶体进行详细说明)分别接收到正电子煙 灭产生的光子丫 1和丫 2(从扫描数据中获知该接收情况),被称作发生一个符合事件,而每次 发生符合事件就将符合数据加1。为了获得出实际晶体a和实际晶体b的符合数据,假设视野 中屯、0到实际晶体a和实际晶体b连线的距离r是径向坐标,而过0点与两个实际晶体a和实际 晶体b连线的垂线oc与x轴的夹角d)为角度坐标,(r,d))唯一地表示一对实际晶体对应的位 置。将所有位于(r,(1))的所发生的符合事件的次数累计的和作为矩阵中(r,(1))处的值,而 矩阵中(r,d))处的值就是实际晶体a和实际晶体b的符合数据。
[0035] 在实际应用中,符合数据可w为即时符合数据或者随机符合数据。
[0036] 针对即时符合数据,基于实际晶体a和实际晶体b的扫描数据(接收到正电子煙灭 产生的光子丫 1和丫 2),将实际晶体a和实际晶体b接收到光子丫 1和丫 2的事件按时间顺序分 别排列成两列,如图2(a)所示。上面一列是实际晶体a接收到光子丫 1的事件,下面一列是实 际晶体b接收到光子丫 2的事件,如果实际晶体a接收到光子丫 1的事件与实际晶体b接收到光 子丫 2的事件之间的时间差在一个符合时间窗内,则认为发生一个符合事件,将即时符合数 据加1。如图2(a)所示,可w认为一共发生3个符合事件,因此即时符合数据为3。
[0037] 针对随机符合数据,可w采用延迟符合窗法获得随机符合数据,例如,基于图2(a) 的场景,在将实际晶体a和实际晶体b接收到光子t 1和t 2的事件按时间顺序分别排列成两 列之后,可w将其中任意一列事件序列延迟一定时间,如图2(b)所示,为将实际晶体a接收 到光子丫 1的事件延迟一定时间后的示意图,而实际晶体b接收到光子丫 2的事件的时间保持 不变。基于此,如果实际晶体a接收到光子丫 1的事件与实际晶体b接收到光子丫 2的事件之间 的时间差在一个符合时间窗内,则认为发生一个符合事件,将随机符合数据加1。如图2(b) 所示,可w认为一共发生2个符合事件,因此随机符合数据为2。
[0038] 考虑到采用延迟符合窗法获得的随机符合数据的噪声水平较大,需要对随机符合 数据进行去噪声处理。而在连续进床扫描模式中,目前并没有有效的对随机符合数据进行 去噪声处理的方式。基于此,在本申请实施例中,将提供一种连续进床扫描模式中,对随机 符合数据进行去噪声处理的方式,使得参与重建的数据更加准确,进而提高图像重建的质 量。在本申请实施例中,将通过延迟符合窗法获得的随机符合数据称为延迟随机符合数据, 在对延迟随机符合数据进行去噪声处理后,可w得到去噪声处理后的随机符合数据。
[0039] 针对本申请实施例中提供的图像重建的去噪声方法,参见图3所示,图3示例了一 个被检体在pet系统中执行连续进床扫描的场景示意图,图中箭头所示为被检体的进床方 向(例如,被检体躺在扫描床上,扫描床沿该箭头方向移动),可w是按照一个固定速率运 动。图3所示的pet系统,其实是该pet系统的一个截面,该pet系统可w包括很多探测环,探 测环的示例可w参见图4。图4所示是pet系统的立体示意图,其中示例了四个探测环21(实 际的探测环数量会更多,探测环也可w称为block(探测器)环),每个探测环由多个block22 拼装而成,而每个block22包括若干晶体23。其中,多个探测环构成一个内部空间24,被检体 就位于该内部空间24中,在运个内部空间发生的正电子煙灭事件所产生的单光子(即丫光 子),可w被探测环中的晶体23接收到。图3所示的pet系统,可w是按照图4中的虚箭头所示 方向的剖面得到,由图4可w看到,可w将pet系统理解为包括很多晶体环,各晶体环是沿着 探测环21相同方向的一个环状晶体串,其中可w包括很多单个的晶体,比如一环100个晶 体。
[0040] 本申请实施例中,虚拟了一个pet系统,实际上,通过将实际晶体虚拟对应一个w 上的虚拟晶体,继而形成虚拟pet的系统,而实际晶体与虚拟晶体的对应关系是根据实际晶 体位置和床码信息确定的。可w参见图5的虚拟的pet系统示意图,该虚拟的pet系统10包括 很多的虚拟晶体,例如,虚拟晶体11的大小可w认为与实际的pet系统的实际晶体一致。为 了区分方便,将虚拟的pet系统中的晶体称为虚拟晶体,将实际的pet系统中的晶体称为实 际晶体。
[0041] 进一步的,该虚拟的pet系统10也包括很多探测环,探测环形式上与图4所示的实 际的pet系统是相同的,图5是该虚拟的pet系统的一个剖面图。虚拟的pet系统与实际的pet 系统的区分在于:虚拟的pet系统10比实际的pet系统要大,主要是探测环的数量会增加(比 如,实际的pet系统包括20个探测环,而虚拟的pet系统包括40个探测环,此处数量仅是示 例)。虚拟的pet系统10比实际的pet系统要大的原因是:由图3可w看到,实际的pet系统在 进床方向(该方向后续可w称为z轴)上的长度通常比被检体的长度要小,而由图5可w看 到,虚拟的pet系统在巧由方向上的长度比被检体的长度要大,运样,就可w通过虚拟的pet 系统10,将连续进床扫描虚拟成被检体在pet系统中进行固定扫描(类似于分床扫描),使得 被检体在pet系统中固定不动就可w得到全身各个部位的扫描。
[0042] 图5所示的虚拟的pet系统10,还有一个特点是,其中的每一个虚拟晶体都固定对 应被检体的一个扫描位置。比如,图5中所示的虚拟晶体11对应被检体的扫描位置13,由于 虚拟晶体11的长度可w认为与实际的pet系统的实际晶体一致,所w与一个虚拟晶体对应 的扫描位置也可w认为是一个实际晶体的长度。比如,假设x是被检体上的一个点位置,(x- s,x s]的范围可w认为是上述扫描位置13,s为实际晶体大小的一半。对于扫描位置15,可 w是与虚拟晶体14对应,可w看到,每一个虚拟晶体与被检体12的一个扫描位置对应。
[0043] 进一步的,上述的每一个虚拟晶体与一个扫描位置对应,其中的"对应"可w运样 理解:假设被检体12在虚拟的pet系统10中固定不动的扫描,则被检体12的上述扫描位置13 与虚拟晶体11在位置上正对,可w类似于传统的分床扫描中的扫描床固定不动时的实际晶 体与扫描位置的一一对应。
[0044] 此外,如前面提到的,图5只是示意了虚拟的pet系统的一个剖面,其实该虚拟的 阳t系统也是一个环形的探测装置,类似于图4所示的立体系统,当被检体放置于虚拟的pet 系统的内部空间时,对应某一个扫描位置的虚拟晶体的数量很多,其实是一个晶体环。可w 参见图6的示例,w扫描位置13为例,虚拟晶体11、虚拟晶体41、虚拟晶体42等一个环的很多 虚拟晶体,都是与该扫描位置对应的虚拟晶体,也就是说,与某个扫描位置对应的虚拟晶体 是一个环的多个虚拟晶体,运些虚拟晶体只是相对于扫描位置的角度不同。可w想象,当被 检体躺在扫描床上,位于图4所示的内部空间24中时,其实就是位于一个环状探测装置的内 部,被检体的任一个位置都对应着一个环的虚拟晶体。
[0045] 经过上述描述可w看到,该虚拟的pet系统10,即为虚拟成一个类似于分床扫描的 pet系统,尽管被检体在pet系统中w连续进床方式扫描,扫描床是不断运动的,但是,通过 将pet系统10假想成一个相当于扫描床不动时扫描的pet系统,相当于将被检体放置在图5 的虚拟的pet系统10中进行固定不动的扫描,虚拟的pet系统10中的各个虚拟晶体固定对应 被检体的一个扫描位置。
[0046] 本申请实施例中,如果要利用图5所示的虚拟的pet系统10,对响应线上的延迟随 机符合数据进行去噪声处理,则可能执行如下过程:获得该响应线上的虚拟晶体的单光子 计数率;获得该虚拟晶体在响应线上对应的各个实际晶体的晶体接收效率;利用该晶体接 收效率对延迟随机符合数据进行去噪声处理。
[0047] 如下提供一种获得虚拟晶体的单光子计数率的例子,在【具体实施方式】中并不局限 于下面列举的获得方式。为了获得虚拟晶体的单光子计数率,首先获得虚拟晶体的单光子 计数,然后,根据得到的虚拟晶体的单光子计数,w及虚拟晶体对应的扫描位置的扫描时 间,获得虚拟晶体的单光子计数率,比如,通过虚拟晶体的单光子计数除w该扫描时间得到 虚拟晶体的单光子计数率。
[0048] 在一个例子中,可w统计虚拟的pet系统中的每一个虚拟晶体在被检体的扫描过 程中,所获取到的单光子计数,而且该单光子计数就是在整个扫描过程中,该虚拟晶体接收 到的单光子(即正电子煙灭事件中产生的丫光子)的数量,该虚拟晶体接收到的单光子的数 量就是虚拟晶体的单光子计数。
[0049] 虚拟晶体的单光子计数的获得:
[0050] 每一个虚拟晶体的单光子计数都是实际的pet系统中的多个实际晶体的单光子计 数的累加,具体是将哪些实际晶体接收到的哪部分单光子计数,统计到与运些实际晶体对 应的某个虚拟晶体,可w结合图5和图7来说明。
[0051] 如图5所示,仍w被检体12的其中一个扫描位置为例,比如,w扫描位置13为例,该 扫描位置13对应的是虚拟晶体11。在连续进床扫描模式中,被检体将随着扫描床一起移动, 而被检体上的扫描位置13也将随之一起移动,图7中示出了扫描位置13被扫描过程的两个 端点,从13-1的位置开始接受扫描,并沿着箭头51的方向(运也是扫描床的进床方向)随被 检体一起运动,直至运动到13-2的位置停止接受扫描(比如,可w是移出了阳t系统)。此外, 图7中还示出了运两个端点位置所对应的晶体环,其中的虚线52表示运两个晶体环之间是 连续的,还有很多晶体环,可w想象,运是一个立体的实际的pet系统,只是在图7中仅示出 了该pet系统两个端侧的两个晶体环。
[0052] 请继续参见图7所示,实际晶体53、实际晶体54、实际晶体55直至实际晶体58(在图 7中仅示例了一部分实际晶体,实际数量可能更多),组成了一个"晶体串",该晶体串的方向 与箭头51所示的行进方向平行,并且,在扫描位置13从13-1的位置到13-2的位置运个过程 的扫描中,上述晶体串中的每一个实际晶体都会有一个与扫描位置13"对应"的时间。比如, 扫描位置13位于图7所示的最左端的晶体环中时,则实际晶体53处于与扫描位置13"对应" 的位置,当扫描位置13位于图7所示的最右端的晶体环中时,则实际晶体58处于与扫描位置 13"对应"的位置,而且,中间的各个晶体,比如实际晶体54、实际晶体55等,都会有一个与扫 描位置13"对应"的位置。
[0053] 图8示例了某个实际晶体与扫描位置13位置对应的运动过程示意图,结合图8所 示,w实际的pet系统的其中一个实际晶体55为例,图8示意了连续进床扫描过程中的五个 时刻,分别为t1、t2、t3、t4和巧,从t1至t5的顺序,被检体12沿着箭头所示的进床方向在移 动,可w是按照一定速率匀速进床。其中,实际晶体55的位置固定,随着被检体12的进床移 动,实际晶体55的中屯、线s所对应的被检体12上的位置也在不断移动。在t3时刻,扫描位置 13的左侧是扫描位置13的中屯、线,s是实际晶体长度的一半巧ij达实际晶体55的中 屯、线s,在t4时刻,扫描位置13的右侧"x s"到达实际晶体55的中屯、线s,在t3至t4的时间段 内,可w认为扫描位置13与实际晶体55对应。
[0054] 按照上述的原理,被检体12在连续进床的过程中,对于图7中所示的实际晶体53至 实际晶体58之间的运个晶体串来说,每个实际晶体都会有一个类似图8所示的对应扫描位 置13的时间段,在该时间段内该实际晶体接收到的单光子数,即属于扫描位置13对应的虚 拟晶体11接收的单光子计数的一部分。即,可w将实际晶体53至实际晶体58之间的运个晶 体串中的每个实际晶体在对应扫描位置13时接收到的光子数累加,得到图6中所示的对应 扫描位置13的虚拟晶体11的单光子计数。其中,虚拟晶体11与上述的晶体串的关系,由图6 和图7可w看到,如果假设扫描位置13处于晶体环的环屯、,那么,虚拟晶体11与上述晶体串 中的每个实际晶体在运个晶体环中的位置是相同的,即实际晶体与所述虚拟晶体在对应所 述扫描位置时,与扫描位置的相对位置关系相同(如果w晶体环360度来看,则两者在环上 的角度位置相同)。
[0055]同理,在图7中,另一个晶体串包括实际晶体60、实际晶体61、实际晶体62直至实际 晶体64,将运些实际晶体在对应扫描位置13时接收到的单光子数,可w均累加到图6所示的 虚拟晶体42中。其它虚拟晶体的单光子计数的获得不再详述,原理与上述相同,都是由与该 虚拟晶体位于相同位置的一个晶体串的各个实际晶体的单光子数的累加。如果将一个实际 晶体在对应某个扫描位置时接收到的单光子计数称为一个单光子计数分量,那么实际的 pet系统的一个晶体串的多个实际晶体,将获取到对应该扫描位置的多个单光子计数分量, 将运些单光子计数分量叠加,即得到对应该扫描位置的虚拟晶体的单光子计数。
[0056] 通过上述方法,可w对虚拟的pet系统中的每个虚拟晶体,得到该虚拟晶体在扫描 过程中的单光子计数,即对于某个虚拟晶体来说,确定该虚拟晶体对应的被检体的扫描位 置,还确定该虚拟晶体所对应的实际pet系统中的某个晶体串,将该扫描位置在整个扫描过 程中与上述晶体串中的各个实际晶体对应时的单光子计数累加到虚拟晶体中,继而可w得 到该虚拟晶体的单光子计数。
[0057] 在一个例子中,为了实现上述的将实际晶体得到的单光子计数向对应的虚拟晶体 的累加,可w按照如下方式处理:实际晶体在接收到丫光子w后,可w将该丫光子的接收信 息传输至后端的数据处理系统,该接收信息中可w包括丫光子的接收时间,数据处理系统 可w根据被检体的进床运动信息w及该接收时间,确定所述的t光子对应的被检体的扫描 位置,并将该光子的计数累加到对应上述扫描位置的虚拟晶体中。例如,被检体的进床运动 信息可w包括被检体的初始位置信息和被检体的连续进床速度。比如,在扫描开始时,被检 体中的某个扫描位置对应的是实际晶体cl,被检体的连续进床速度是每秒钟sl的距离,那 么根据丫光子的接收时间w及上述连续进床速度,就可w知道在所述"接收时间"的时刻, 实际晶体cl对应的被检体中的扫描位置。
[005引经过上述的描述获知,可w构造出一个虚拟的pet系统10,并且将连续进床扫描模 式下的扫描过程,虚拟为被检体在该虚拟的pet系统10中,固定扫描一段时间的扫描过程, 而且还可w通过上述的方法,获得该扫描过程中,虚拟的pet系统10中的各个虚拟晶体所获 得的单光子计数。
[0059] 如下提供一种获得实际晶体的晶体接收效率的例子,在【具体实施方式】中并不局限 于下面列举的获得方式。其中,当在单位时间内有n个单光子发射到实际晶体上时,如果被 识别到m个单光子,则实际晶体的晶体接收效率ri=m/n。
[0060] 实际晶体的晶体接收效率的获得:
[0061] 在一个例子中,pet系统中的每个实际晶体的晶体接收效率可w使用一个近似值, 在pet系统中屯、放置一个圆柱型水模,该圆柱型水模的药物活度保证pet系统内的剂量和扫 描待检体时接近,在扫描床不动的情况下扫描圆柱型水模,获得所有实际晶体的单光子计 数率,并使用如下公式获得实际晶体的晶体接收效率其中,i表示实际晶体的晶体 号,si表示实际晶体i上的单光子计数率,i表示所有实际晶体的单光子计数率的均值。基于 上述分析可w看出,在同一剂量下,可w获得实际晶体的单光子计数率与所有实际晶体的 单光子计数率的均值之间的比值,并将所述比值作为所述实际晶体的晶体接收效率。
[0062] 但实际上,在不同的药物活度下,实际晶体的晶体接收效率不同,为了更准确的获 得实际晶体的晶体接收效率,在另一个例子中,可w分别获得不同剂量(不同剂量对应不同 的药物活度)下的每个实际晶体的晶体接收效率,并根据不同剂量下的数据建立一个实际 晶体上的单光子计数率与晶体接收效率的函数关系,w使得在得到实际晶体的单光子计数 率后,可w根据函数关系获得对应的晶体接收效率,且晶体接收效率是根据不同剂量的测 试确定,较为准确。基于上述分析可w看出,在不同剂量下,可w根据实际晶体的单光子计 数率,w及单光子计数率与晶体接收效率之间的函数关系,得到所述实际晶体的晶体接收 效率,所述函数关系是根据不同剂量下获得的晶体接收效率得到。
[0063] 例如,为了获得某一药物活度下的pet系统中的每个实际晶体的晶体接收效率,可 w在pet系统中屯、放置轴向长度超过pet系统的轴长的一个圆柱型水模,该圆柱型水模的药 物剂量为do,在扫描床不动的情况下扫描圆柱型水橫,巧得所有连际晶体的单光子计数率, 并使用如下公式获得实际晶体的晶体接收效率
其中,i表示实 际晶体的晶体号,si(o)表示实际晶体i上的单光子计数率,表示所有实际晶体的单光 子计数率的均值。
[0064] 此外,为了获得不同剂量下的pet系统中的每个实际晶体的晶体接收效率,如上所 述,在pet系统中屯、放置轴向长度超过pet系统的轴长的一个圆柱型水模,该圆柱型水模的 药物剂量为dt,在扫描床不动的情况下扫描圆柱型水模,获得所有实际晶体的单光子计数 率,并使用如下公式获得实际晶体的晶体接收效率:
适过 对不同的dt做如上测试,获得ru(si(t))。
[0065] 基于此,可w根据不同剂量的测试结果建立函数关系ru(s(t)),该函数关系用于 表示实际晶体上的单光子计数率s(t)与实际晶体的晶体接收效率之间的关系,使得只要知 道实际晶体上的单光子计数率s(t),即可获得晶体接收效率。
[0066] 可w按照上述的方法,获得实际的pet系统中的其中一个实际晶体的晶体接收效 率。此外,当获得出一个实际晶体的晶体接收效率之后,可w很方便快捷的获取pet系统中 的其它实际晶体的晶体接收效率。具体的,在临床活度范围内,不同活度下的每个实际晶体 的单光子计数率不同,而且随着活度增大,所有实际晶体的单光子计数率都是增大的。但 是,在一个固定剂量dt下,不同实际晶体之间的单光子计数率si(t)之间的比例关系是固定 的,因此,只要知道一个实际晶体上的单光子计数率,就可w获得所有实际晶体上的单光子 计数率,而且知道几个实际晶体上的单光子计数率的均值,也可w获得所有实际晶体上的 单光子计数率。即只要知道一个实际晶体上的单光子计数率或者几个实际晶体上的单光子 计数率的均值,就可w获得所有实际晶体上的单光子计数率,再根据上述的函数关系,就可 w得到对应的实际晶体的晶体接收效率。
[0067] 例如,实际晶体1与实际晶体2的比例关系是1:2,实际晶体2与实际晶体3的比例关 系是1:2,实际晶体3与实际晶体4的比例关系是1:2。基于此,假设知道实际晶体2上的单光 子计数率为a,则可w获得实际晶体1上的单光子计数率为a/2,获得实际晶体3上的单光子 计数率为a*2,获得实际晶体4上的单光子计数率为a*4。假设上述4个实际晶体上的单光子 计数率的均值为b,则4个实际晶体上的单光子计数率的总和是4b,因此,可w获得实际晶体 1上的单光子计数率为4b/15,获得实际晶体2上的单光子计数率为8b/15,获得实际晶体3上 的单光子计数率为16b/15,获得实际晶体4上的单光子计数率为32b/15。
[0068] 为了实现上述利用实际晶体上的单光子计数率获得晶体接收效率的过程,首先要 获得实际晶体上的单光子计数率。在一个例子中,对于每个实际晶体来说,可w统计出该实 际晶体接收到的单光子计数,并根据单光子计数w及单光子计数的接收时间,获得所述实 际晶体的单光子计数率,如通过实际晶体接收到的单光子计数除w该接收时间,得到所述 实际晶体的单光子计数率。在另一个例子中,可w获得对应一个扫描位置的多个单光子计 数分量,根据多个单光子计数分量,得到与所述扫描位置对应的虚拟晶体的单光子计数率, 利用所述虚拟晶体的单光子计数率获得所述虚拟晶体对应的实际晶体的单光子计数率。
[0069] 其中,针对第一种方式,对于每个实际晶体来说,可w统计出该实际晶体在扫描过 程中所获取到的单光子计数,该单光子计数就是该实际晶体接收到的单光子(即正电子煙 灭事件中产生的丫光子)的数量,而该实际晶体的单光子计数率可w通过实际晶体的单光 子计数除w单光子计数的接收时间得到。
[0070] 其中,针对第二种方式,针对利用虚拟晶体的单光子计数率获得实际晶体的单光 子计数率的过程,在上面的内容中已经指出,将实际晶体53至实际晶体58之间的运个晶体 串中的每个实际晶体在对应扫描位置13时接收到的光子数累加,得到虚拟晶体11的单光子 计数,因此一个虚拟晶体的单光子计数是多个实际晶体的单光子计数的和,且一个虚拟晶 体的单光子计数率是多个实际晶体的单光子计数率的和。假设虚拟晶体的单光子计数率为 c,则说明实际晶体53至实际晶体58运多个实际晶体上的单光子计数率的总和是c,基于实 际晶体53至实际晶体58运多个实际晶体的比例关系,就可获得实际晶体的单光子计数率。
[0071] 针对延迟随机符合数据的去噪声处理过程,由于延迟随机符合数据的噪声水平较 大,不符合图像重建的质量要求,因此需要对延迟随机符合数据进行去噪声处理,w使去噪 声处理后的随机符合数据符合图像重建的质量要求。在介绍对延迟随机符合数据进行去噪 声处理之前,首先介绍符合图像重建的质量要求的去噪声处理后的随机符合数据,运一随 机符合数据就是本申请中需要得到的随机符合数据,其是通过对延迟随机符合数据进行去 噪声处理后得到。
[0072] 其中,该去噪声处理后的随机符合数据是响应线上的随机符合数据,在一个例子 中,响应线上的随机符合数据=响应线的随机符合计数率*扫描时间。假设某条响应线对应 虚拟的pet系统中的虚拟晶体i和虚拟晶体j,在上述公式中,随机符合计数率即该虚拟晶体 i和虚拟晶体j对应的响应线上单位时间内得到的随机符合数据,而扫描时间是运条响应线 在实际的pet系统中的扫描时间,可w称为响应线的扫描时间。例如,可w结合图9来说明上 述"响应线的扫描时间",在图9中,虚拟的pet系统中的与被检体中的某个扫描位置x对应的 响应线y,该响应线y在实际的pet系统中,由开始扫描到结束扫描的时间段,即图9中的被检 体由时间ts运动至时间te的时间段。如下提供一种获得响应线的随机符合计数率的例子, 在具体方式中并不局限于下面列举的获得方式。
[0073] 响应线的随机符合计数率的获得:在一个例子中,对于虚拟晶体i和虚拟晶体j对 应的响应线上的随机符合计数率的获得,可w按照如下方式:对于每个虚拟晶体,根据虚拟 晶体的单光子计数率,w及所述虚拟晶体在响应线上对应的各个实际晶体的晶体接收效 率,得到所述响应线的随机符合计数率。
[0074] 如下的公式(1),即为虚拟晶体i和虚拟晶体j对应的响应线的随机符合计数率的 获得公式,下面将说明对于该公式的推导过程w及该公式的含义,w对上面提到的响应线 上的随机符合计数率的获得方法进行说明。
[0075]
[0076] 其中,响应线在图9所示的实际的pet系统中扫描时,所经过的实际晶体的对数是m 对,结合图10所示,图10中示例了响应线的扫描过程,实线的响应线表示该响应线的起始扫 描点,两条虚线的响应线表示在扫描过程中的该响应线的两个位置,整个扫描过程经过了m 对实际晶体对。比如,按照响应线的方向,实际晶体81和实际晶体82是一个晶体对,实际晶 体83和实际晶体84是一个晶体对,共有m对实际晶体对。并且上述响应线的扫描过程中经过 的实际晶体对中的实际晶体,可称为虚拟晶体在响应线上对应的各个实际晶体,比如虚拟 晶体i在响应线上对应的各个实际晶体包括实际晶体81、实际晶体83等。
[0077] 在公式(1)中,i和j是响应线上的两个虚拟晶体的晶体号,xl、x2、…皿是虚拟晶体 i在响应线上对应的各个实际晶体,yl、y2、-tm是虚拟晶体j在响应线上对应的各个实际晶 体,tuxl、rux2、tuxm是实际晶体x1、x2、…xm对应的晶体接收效率,rijyl、njy2、tljym是实际晶体y 1、 y2、…ym对应的晶体接收效率,與是虚拟的pet系统中由被检体发射到虚拟晶体i的单光子 计数率,%是虚拟的pet系统由被检体发射到虚拟晶体j的单光子计数率,是符合时间窗。
[0078] 在上面的过程中已经介绍,每个虚拟晶体可w对应多个实际晶体,如虚拟晶体1对 应实际晶体1、实际晶体2和实际晶体3,虚拟晶体6对应实际晶体7、实际晶体8和实际晶体9, 基于此,假设在第一个扫描位置,虚拟晶体1对应实际晶体1,虚拟晶体6对应实际晶体7,在 第二个扫描位置,虚拟晶体1对应实际晶体2,虚拟晶体6对应实际晶体8,在第=个扫描位 置,虚拟晶体1对应实际晶体3,虚拟晶体6对应实际晶体9。针对公式(1 ),当i为1,j为6时,贝u 实际晶体对的数量m为3,xl为实际晶体l、x2为实际晶体2、x3为实际晶体3、yl为实际晶体7、 y2为实际晶体8、y3为实际晶体9。
[0079] 在公式(1)中,可
uj是虚拟晶体i和虚 拟晶体j的晶体对接收效率,基于此,公式(1)可w简化)
,在得到响应线的 随机符合计数率ru之后,由于响应线上的随机符合数据为随机符合计数率*扫描时间,因此 随机符合数据为,!'为对应的扫描时间。
[0080] 基于上述分析,随机符合数据2:1:1??!,?就是本申请中需要得到的去噪声处理后 的随机符合数据,即对延迟随机符合数据进行去噪声处理的结果是该随机符合数据 ztlkyi鸿,化本申请实施例中,可w另ri功该随机符合数据。
[0081] 在一个例子中,可w获得多个延迟随机符合数据,对于延迟随机符合数据的获得 方式,已经在上面的过程中介绍,即采用延迟符合窗法获得延迟随机符合数据,在此不再重 复寶述,可w直接使用运多个延迟随机符合数据进行处理。延迟随机符合数据rii是虚拟晶 体i和虚拟晶体1对应的延迟随机符合数据,1 g b,且b是包含虚拟晶体j的一组虚拟晶体的 集合。延迟随机符合数据rjk是虚拟晶体j和虚拟晶体k对应的延迟随机符合数据,k g a,且a 是包含虚拟晶体i的一组虚拟晶体的集合。rik是虚拟晶体1和虚拟晶体k对应的延迟随机符 合数据。其中,如图11所示,a和b可w是探测环中相对的两个连续晶体块。
[0082] 为了确定出虚拟晶体的集合a和虚拟晶体的集合b,在一个例子中,可w给出集合a 内的虚拟晶体的数量,并给出集合b内的虚拟晶体的数量。通常情况下,集合a内的虚拟晶体 的数量与集合b内的虚拟晶体的数量相同,假设数量为h个,如图11所示,该数量h为10个。而 且,集合a内的虚拟晶体是连续的,集合b内的虚拟晶体也是连续的。在此基础上,只要集合a 内包含虚拟晶体i,集合b内包含虚拟晶体j即可。因此,集合a内包含虚拟晶体i在内的连续 的h个虚拟晶体,集合b内包含虚拟晶体j在内的连续的h个虚拟晶体。
[0083] 在一个例子中,虚拟晶体i可w位于连续的h个虚拟晶体的中间,例如,如果h/2为 整数,则虚拟晶体i是集合a中的第h/2个虚拟晶体,如果h/2为小数,则虚拟晶体i是集合a中 的对h/2向上取整个虚拟晶体。同理,虚拟晶体j是集合b中的第h/2个虚拟晶体,或者对h/2 向上取整个虚拟晶体。
[0084] 当然,虚拟晶体i和虚拟晶体j也可w是其它位置的虚拟晶体,如虚拟晶体i是集合 a中的第一个虚拟晶体,或者最后一个虚拟晶体等,虚拟晶体j是集合b中的第一个虚拟晶 体,或者最后一个虚拟晶体等,本申请实施例中对于虚拟晶体i和虚拟晶体j的位置不再说 明,只要得到集合a和集合邮p可。
[0085] 需要说明的是,此处使用的是两个虚拟晶体对应的延迟随机符合数据,而上述延 迟符合窗法获得的是两个实际晶体对应的延迟随机符合数据,因此,需要利用两个实际晶 体对应的延迟随机符合数据,获得两个虚拟晶体对应的延迟随机符合数据。在一个例子中, 对于运两个虚拟晶体,可w获知每个虚拟晶体对应的所有实际晶体,并利用运些实际晶体 对应的延迟随机符合数据,获得运两个虚拟晶体对应的延迟随机符合数据。例如,虚拟晶体 1对应实际晶体1、实际晶体2和实际晶体3,虚拟晶体2对应实际晶体4、实际晶体5和实际晶 体6,则虚拟晶体1和虚拟晶体2对应的延迟随机符合数据可w为:实际晶体1与实际晶体4对 应的延迟随机符合数据,加上实际晶体2与实际晶体5对应的延迟随机符合数据,加上实际 晶体3与实际晶体6对应的延迟随机符合数据。
[0086] 例如,当i为11,j为16时,b可w是虚拟晶体15、虚拟晶体16、虚拟晶体17组成的一 组虚拟晶体的集合,a可w是虚拟晶体10、虚拟晶体11、虚拟晶体12组成的一组虚拟晶体的 集合。基于此,k的取值可w为10、11、12,1的取值可w为15、16、17。当k的取值为12,1的取值 为17时,贝化ii是虚拟晶体11和虚拟晶体17对应的延迟随机符合数据,rjk是虚拟晶体16和虚 拟晶体12对应的延迟随机符合数据,rik是虚拟晶体17和虚拟晶体12对应的延迟随机符合数 据。对于其它k和1的取值组合,均有对应的延迟随机符合数据rii、r化、rik,在此不再重复寶 述。
[0087] 在一个例子中,延迟随机符合数据rii可w通过如下公式获得:t持奴%辑;),延迟 随机符合数据ra可w通过如下公式获得:it 延迟随机符合数据ri河w通过如 下公式获得:f巧微诚稱;)。进一步的,由于ieb,kga,因此,ri两w通过如下公式获得: 玄igb民il,因此,
.同理,民^乱可1^通过如下公式获得:玄kga民化,因

r1j为码..并且r1 k为r(2.k%i某),因此,可w通过整理公式(3 ),得出
[008引基于此 :...(2);通过整 理公式(2),得出 i......,.贷)。由于
.....??(4)。进一步的,通过整理公式(4),就可w得出 l后,将上述rib和rw代入公式(5)中,可w得出 噪声处理后的随机符合数据。
[0089]在上述公式中,qii是虚拟晶体i和虚拟晶体1的晶体对接收效率,qjk是虚拟晶体j 和虚拟晶体k的晶体对接收效率,aik是虚拟晶体1和虚拟晶体k的晶体对接收效率。例如,当i 为11,j为16,k的取值为12,1的取值为17时,则oi堤虚拟晶体11和虚拟晶体17的晶体对接收 效率,qjk是虚拟晶体16和虚拟晶体12的晶体对接收效率,aik是虚拟晶体17和虚拟晶体12的 晶体对接收效率。
[0090] 其中,an的获得公式与上述日。的获得公式类似,只是将au中的j替换成1,如
的获得公式与上述clu的获得公式类似,只是将曰ij 中的j替换成4,将^中的i替换成j,aik的获得公式与上述化的获得公式类似,只是将化中 的j替换成k,将au中的i替换成1,在此不再寶述。
[0091] 由上述描述,本申请实施例的图像重建的方法,应用于包括多个实际晶体的医疗 设备,并可w包括图12中所示的如下处理步骤进行处理:
[0092] 在步骤1201中,获得连续进床扫描模式下的扫描数据。
[0093] 其中,在连续进床扫描模式下的扫描过程中,被检体中的放射性核素可w产生正 电子煙灭事件,该正电子煙灭事件可w产生丫光子,实际晶体需要接收该丫光子,而运些丫 光子的接收信息(如接收时间、接收位置等)就是扫描数据。当然,扫描数据还可w包括其它 信息,所有在连续进床扫描模式下的扫描过程中,得到的数据均可w认为是扫描数据,在此 不再详加寶述。
[0094] 在步骤1202中,将实际晶体虚拟对应一个w上虚拟晶体,根据扫描数据获得虚拟 晶体所在响应线的延迟随机符合数据。
[00m] 其中,在上面的过程中已经介绍到,可w通过将实际晶体虚拟对应一个w上的虚 拟晶体,继而形成虚拟pet的系统,而实际晶体与虚拟晶体的对应关系是根据实际晶体位置 和床码信息确定的,在此不再重复寶述。
[0096] 其中,在上面的过程中已经介绍到,基于扫描数据,可w采用延迟符合窗法获得两 个实际晶体对应的延迟随机符合数据。此外,针对两个虚拟晶体来说,可w根据运两个虚拟 晶体对应的所有实际晶体的延迟随机符合数据,获得运两个虚拟晶体对应的延迟随机符合 数据,在此不再重复寶述。
[0097] 在步骤1203中,利用实际晶体的晶体接收效率对延迟随机符合数据进行去噪声处 理,得到去噪声处理后的随机符合数据。
[0098] 在一个例子中,在步骤1203之前,还可w获得实际晶体的单光子计数率,并利用实 际晶体的单光子计数率得到该实际晶体的晶体接收效率。
[0099] 所述获得实际晶体的单光子计数率的过程,可w包括如下方式:
[0100] 方式一、统计所述实际晶体接收到的单光子计数,并根据所述单光子计数w及所 述单光子计数的接收时间,得到所述实际晶体的单光子计数率。
[0101] 方式二、获得对应一个扫描位置的多个单光子计数分量,根据所述多个单光子计 数分量,得到与所述扫描位置对应的虚拟晶体的单光子计数率;利用所述虚拟晶体的单光 子计数率,得到所述虚拟晶体对应的实际晶体的单光子计数率;其中,一个单光子计数分量 是所述扫描位置运动到对应的一个实际晶体时,所述实际晶体接收到的单光子计数,且所 述实际晶体与所述虚拟晶体在对应所述扫描位置时与所述扫描位置的相对位置关系相同。
[0102] 其中,虚拟晶体固定对应被检体的某个扫描位置,并且向该虚拟晶体中累加单光 子计数的各个实际晶体,在对应所述扫描位置时,实际晶体和虚拟晶体与扫描位置的相对 位置关系相同,且每一个实际晶体累加的计数是该扫描位置运动到对应该晶体时得到,可 w称为一个单光子计数分量。
[0103] 针对方式二、在根据所述多个单光子计数分量,得到与所述扫描位置对应的虚拟 晶体的单光子计数率的过程中,根据被检体的进床运动信息、w及接收到的单光子的接收 时间,确定所述单光子对应的被检体的扫描位置,并将所述多个单光子计数分量累加到与 所述扫描位置对应的虚拟晶体中,得到所述虚拟晶体的单光子计数;根据所述虚拟晶体的 单光子计数、w及所述虚拟晶体对应的扫描位置在扫描过程中的扫描时间,得到所述虚拟 晶体的单光子计数率。
[0104] 在一个例子中,利用实际晶体的单光子计数率得到实际晶体的晶体接收效率的过 程,具体可w包括如下方式:方式一、在不同剂量下,根据实际晶体的单光子计数率,w及单 光子计数率与晶体接收效率之间的函数关系,得到所述实际晶体的晶体接收效率,所述函 数关系是根据不同剂量下获得的晶体接收效率得到。方式二、在同一剂量下,获得实际晶体 的单光子计数率与所有实际晶体的单光子计数率的均值之间的比值,并将所述比值作为所 述晶体接收效率。
[0105] 在一个例子中,利用晶体接收效率对延迟随机符合数据进行去噪声处理,得到去 噪声处理后的随机符合数据的过程,具体可w包括如下方式:确定响应线上的两个虚拟晶 体、w及所述两个虚拟晶体在响应线上对应的各个实际晶体,并获取各个实际晶体的晶体 接收效率;根据所述各个实际晶体的晶体接收效率,得到所述两个虚拟晶体的晶体对接收 效率,并利用所述晶体对接收效率对所述延迟随机符合数据进行去噪声处理,得到去噪声 处理后的随机符合数据。
[0106] 本发明实施例中,根据所述各个实际晶体的晶体接收效率,得到所述两个虚拟晶 体的晶体对接收效率的过程,具体可w包括:针对所述响应线上的虚拟晶体i和虚拟晶体j, 根据所述虚拟晶体i在所述响应线上对应的m个实际晶体的晶体接收效率、所述虚拟晶体j 在所述响应线上对应的m个实际晶体的晶体接收效率,得到所述虚拟晶体i和所述虚拟晶体 j的晶体对接收效率。
[0107] 在一个例子中,可w利用如下公式获得所述两个虚拟晶体的晶体对接收效率:
,该公式的内容参见上面的实施例。
[0108] 本发明实施例中,利用所述晶体对接收效率对所述延迟随机符合数据进行去噪声 处理,得到去噪声处理后的随机符合数据的过程,具体可w包括:根据包含虚拟晶体j的一 组虚拟晶体的集合a、包含虚拟晶体i的一组虚拟晶体的集合b、虚拟晶体i和属于集合b的虚 拟晶体1的晶体对接收效率、虚拟晶体j和属于集合a的虚拟晶体k的晶体对接收效率、虚拟 晶体1和虚拟晶体k的晶体对接收效率,对虚拟晶体i和虚拟晶体1对应的延迟随机符合数 据、虚拟晶体j和虚拟晶体k对应的延迟随机符合数据、虚拟晶体1和虚拟晶体k对应的延迟 随机符合数据,进行去噪声处理,得到去噪声处理后的虚拟晶体i和虚拟晶体j的随机符合 数据。
[0109] 在一个例子中,可w利用如下公式对所述延迟随机符合数据进行去噪声处理:
。该公式的内容参见上面的实施例。
[0110] 在步骤1204中,利用去噪声处理后的随机符合数据进行图像重建。
[0111] 例如,可w在图像重建的数据中,对于每条响应线都使用该响应线上的去噪声处 理后的随机符合数据,从而使得图像重建的数据更加准确。
[0112] 基于上述技术方案,本申请实施例中,针对不满足图像重建要求的延迟随机符合 数据,可w使用晶体接收效率对延迟随机符合数据进行去噪声处理,继而使得去噪声处理 后的随机符合数据可w满足图像重建要求,从而在图像重建时使用满足图像重建要求的随 机符合数据,实现了对延迟随机符合数据去噪声的效果,从而使得参与图像重建的数据更 加准确,图像重建的质量得到提高。
[0113] 图13示例了一个对被检体进行扫描的应用场景,例如,可w是通过连续进床扫描 模式对被检体进行扫描。工作人员1301可w通过控制台1302操作探测装置(该装置包括多 个实际晶体)1303, w对扫描床1304上的被检体1305进行连续进床扫描。在扫描过程中,探 测装置1303中的各个实际晶体可w将接收到的单光子计数传送到后端的处理装置1306,该 处理装置1306可w是用于对探测装置接收到的数据进行处理并进行图像重建的装置。该处 理装置1306就可w执行上面方法实施例中描述的图像重建的方法。其中,控制台1302、探测 装置1303、处理装置1306就可w是医疗设备内部的几个功能模块。
[0114] 本申请实施例还提供了一种图像重建的装置,该装置可w应用于包括多个实际晶 体的医疗设备,图14是根据一示例性实施例示出的一种医疗设备1400的框图。参照图14,医 疗设备1400可w包括处理组件1401,其进一步包括一个或者多个处理器,w及由存储器 1402所代表的存储器资源,用于存储可由处理组件1401执行的指令,例如应用程序。存储器 1402中存储的应用程序可w包括一个或者一个w上的每一个对应于一组指令的模块。
[0115] 本申请的实施例中,图像重建的装置可w位于所述的存储器1402中,并且处理组 件1401可w通过该图像重建的装置执行本申请实施例的图像重建的方法,w对被检体进行 连续进床扫描模式时的图像重建。
[0116] 医疗设备1400还可w包括一个电源组件1403,该电源组件1403被配置为执行医疗 设备1400的电源管理。一个有线或者无线网络接口 1404被配置为将医疗设备1400连接到网 络,w及一个输入输出(i/o)接口 1405。
[0117] 本申请实施例的图像重建的装置,该装置用于对被检体进行连续进床扫描模式中 的图像重建;该装置可w从逻辑上划分为多个模块,比如参见图15所示,该装置可w包括: 获得模块1501、处理模块1502和重建模块1503;其中:
[0118] 获得模块1501,用于获得连续进床扫描模式下的扫描数据;将实际晶体虚拟对应 一个w上虚拟晶体,根据所述扫描数据获得所述虚拟晶体所在响应线的延迟随机符合数 据;
[0119] 处理模块1502,用于利用实际晶体的晶体接收效率对所述延迟随机符合数据进行 去噪声处理,得到去噪声处理后的随机符合数据;
[0120] 重建模块1503,用于利用去噪声处理后的随机符合数据进行图像重建。
[0121] 在一个例子中,所述获得模块1501,还用于获得实际晶体的单光子计数率,利用所 述实际晶体的单光子计数率得到所述实际晶体的晶体接收效率。
[0122] 在一个例子中,所述获得模块1501,具体用于在获得实际晶体的单光子计数率的 过程中,统计所述实际晶体接收到的单光子计数,并根据所述单光子计数w及所述单光子 计数的接收时间,得到所述实际晶体的单光子计数率;或者,
[0123] 获得对应一个扫描位置的多个单光子计数分量,根据所述多个单光子计数分量, 得到与所述扫描位置对应的虚拟晶体的单光子计数率;利用所述虚拟晶体的单光子计数 率,得到所述虚拟晶体对应的实际晶体的单光子计数率;
[0124] 其中,一个单光子计数分量是所述扫描位置运动到对应的一个实际晶体时,所述 实际晶体接收到的单光子计数,且所述实际晶体与所述虚拟晶体在对应所述扫描位置时与 所述扫描位置的相对位置关系相同。
[0125] 在一个例子中,所述获得模块1501,具体用于在利用所述实际晶体的单光子计数 率得到所述实际晶体的晶体接收效率的过程中,在不同剂量下,根据所述实际晶体的单光 子计数率,w及单光子计数率与晶体接收效率之间的函数关系,得到所述实际晶体的晶体 接收效率,所述函数关系是根据不同剂量下计算的晶体接收效率得到;或者,在同一剂量 下,获得所述实际晶体的单光子计数率与所有实际晶体的单光子计数率的均值之间的比 值,并将所述比值作为所述晶体接收效率。
[0126] 在一个例子中,所述处理模块1502,具体用于在利用实际晶体的晶体接收效率对 所述延迟随机符合数据进行去噪声处理,得到去噪声处理后的随机符合数据的过程中,确 定响应线上的两个虚拟晶体、w及所述两个虚拟晶体在所述响应线上对应的各个实际晶 体,并获取所述各个实际晶体的晶体接收效率;根据所述各个实际晶体的晶体接收效率,得 到所述两个虚拟晶体的晶体对接收效率,并利用所述晶体对接收效率对所述延迟随机符合 数据进行去噪声处理,得到去噪声处理后的随机符合数据。
[0127] 在一个例子中,所述处理模块1502,具体用于在根据所述各个实际晶体的晶体接 收效率,得到所述两个虚拟晶体的晶体对接收效率的过程中,针对所述响应线上的虚拟晶 体i和虚拟晶体j,根据所述虚拟晶体i在所述响应线上对应的m个实际晶体的晶体接收效 率、所述虚拟晶体j在所述响应线上对应的m个实际晶体的晶体接收效率,得到所述虚拟晶 体i和所述虚拟晶体j的晶体对接收效率。
[0128] 在一个例子中,所述处理模块1502,具体用于在利用所述晶体对接收效率对所述 延迟随机符合数据进行去噪声处理,得到去噪声处理后的随机符合数据的过程中,根据包 含虚拟晶体j的一组虚拟晶体的集合a、包含虚拟晶体i的一组虚拟晶体的集合b、虚拟晶体i 和属于集合b的虚拟晶体1的晶体对接收效率、虚拟晶体j和属于集合a的虚拟晶体k的晶体 对接收效率、虚拟晶体1和虚拟晶体k的晶体对接收效率,对虚拟晶体i和虚拟晶体1对应的 延迟随机符合数据、虚拟晶体j和虚拟晶体k对应的延迟随机符合数据、虚拟晶体1和虚拟晶 体k对应的延迟随机符合数据,进行去噪声处理,得到去噪声处理后的虚拟晶体i和虚拟晶 体j的随机符合数据。
[0129] 本申请实施例的图像重建的功能如果w软件功能单元的形式实现并作为独立的 产品销售或使用时,可w存储在一个计算机可读取存储介质中。基于运样的理解,本申请的 技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可ww软件产 品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用w使得一 台图像重建设备执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包 括:u盘、移动硬盘、只读存储器(rom,read-only memo巧)、随机存取存储器(ram,random access memory)、磁碟或者光盘等各种可w存储程序代码的介质。
[0130] w上所述仅为本申请的较佳实施例而已,并不用w限制本申请,凡在本申请的精 神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。
【主权项】
1. 一种图像重建的方法,应用于包括多个实际晶体的医疗设备,其特征在于,该方法包 括: 获得连续进床扫描模式下的扫描数据; 将实际晶体虚拟对应一个以上虚拟晶体,根据所述扫描数据获得所述虚拟晶体所在响 应线的延迟随机符合数据; 利用实际晶体的晶体接收效率对所述延迟随机符合数据进行去噪声处理,得到去噪声 处理后的随机符合数据; 利用去噪声处理后的随机符合数据进行图像重建。2. 根据权利要求1所述的方法,其特征在于,该方法还包括: 获得实际晶体的单光子计数率,利用所述实际晶体的单光子计数率得到所述实际晶体 的晶体接收效率。3. 根据权利要求2所述的方法,其特征在于,所述获得实际晶体的单光子计数率的过 程,包括: 统计所述实际晶体接收到的单光子计数,并根据所述单光子计数以及所述单光子计数 的接收时间,得到所述实际晶体的单光子计数率;或者, 获得对应一个扫描位置的多个单光子计数分量,根据所述多个单光子计数分量,得到 与所述扫描位置对应的虚拟晶体的单光子计数率;利用所述虚拟晶体的单光子计数率,得 到所述虚拟晶体对应的实际晶体的单光子计数率; 其中,一个单光子计数分量是所述扫描位置运动到对应的一个实际晶体时,所述实际 晶体接收到的单光子计数,且所述实际晶体与所述虚拟晶体在对应所述扫描位置时与所述 扫描位置的相对位置关系相同。4. 根据权利要求2所述的方法,其特征在于,利用所述实际晶体的单光子计数率得到所 述实际晶体的晶体接收效率的过程,包括: 在不同剂量下,根据所述实际晶体的单光子计数率,以及单光子计数率与晶体接收效 率之间的函数关系,得到所述实际晶体的晶体接收效率,所述函数关系是根据不同剂量下 计算的晶体接收效率得到;或者, 在同一剂量下,获得所述实际晶体的单光子计数率与所有实际晶体的单光子计数率的 均值之间的比值,并将所述比值作为所述晶体接收效率。5. 根据权利要求1所述的方法,其特征在于,所述利用实际晶体的晶体接收效率对所述 延迟随机符合数据进行去噪声处理,得到去噪声处理后的随机符合数据的过程,包括: 确定响应线上的两个虚拟晶体、以及所述两个虚拟晶体在所述响应线上对应的各个实 际晶体,并获取所述各个实际晶体的晶体接收效率; 根据所述各个实际晶体的晶体接收效率,得到所述两个虚拟晶体的晶体对接收效率, 并利用所述晶体对接收效率对所述延迟随机符合数据进行去噪声处理,得到去噪声处理后 的随机符合数据。6. 根据权利要求5所述的方法,其特征在于,根据所述各个实际晶体的晶体接收效率, 得到所述两个虚拟晶体的晶体对接收效率的过程,包括: 针对所述响应线上的虚拟晶体i和虚拟晶体j,根据所述虚拟晶体i在所述响应线上对 应的m个实际晶体的晶体接收效率、所述虚拟晶体j在所述响应线上对应的m个实际晶体的 晶体接收效率,得到所述虚拟晶体i和所述虚拟晶体j的晶体对接收效率。7. 根据权利要求6所述的方法,其特征在于,利用所述晶体对接收效率对所述延迟随机 符合数据进行去噪声处理,得到去噪声处理后的随机符合数据的过程,包括: 根据包含虚拟晶体j的一组虚拟晶体的集合a、包含虚拟晶体i的一组虚拟晶体的集合 b、虚拟晶体i和属于集合b的虚拟晶体1的晶体对接收效率、虚拟晶体j和属于集合a的虚拟 晶体k的晶体对接收效率、虚拟晶体1和虚拟晶体k的晶体对接收效率,对虚拟晶体i和虚拟 晶体1对应的延迟随机符合数据、虚拟晶体j和虚拟晶体k对应的延迟随机符合数据、虚拟晶 体1和虚拟晶体k对应的延迟随机符合数据,进行去噪声处理,得到去噪声处理后的虚拟晶 体i和虚拟晶体j的随机符合数据。8. -种图像重建的装置,应用于包括多个实际晶体的医疗设备,其特征在于,该装置包 括: 获得模块,用于获得连续进床扫描模式下的扫描数据;将实际晶体虚拟对应一个以上 虚拟晶体,根据所述扫描数据获得所述虚拟晶体所在响应线的延迟随机符合数据; 处理模块,用于利用实际晶体的晶体接收效率对所述延迟随机符合数据进行去噪声处 理,得到去噪声处理后的随机符合数据; 重建模块,用于利用去噪声处理后的随机符合数据进行图像重建。9. 根据权利要求8所述的装置,其特征在于, 所述获得模块,还用于获得实际晶体的单光子计数率,利用所述实际晶体的单光子计 数率得到所述实际晶体的晶体接收效率。10. 根据权利要求9所述的装置,其特征在于, 所述获得模块,具体用于在获得实际晶体的单光子计数率的过程中,统计所述实际晶 体接收到的单光子计数,并根据所述单光子计数以及所述单光子计数的接收时间,得到所 述实际晶体的单光子计数率;或者, 获得对应一个扫描位置的多个单光子计数分量,根据所述多个单光子计数分量,得到 与所述扫描位置对应的虚拟晶体的单光子计数率;利用所述虚拟晶体的单光子计数率,得 到所述虚拟晶体对应的实际晶体的单光子计数率; 其中,一个单光子计数分量是所述扫描位置运动到对应的一个实际晶体时,所述实际 晶体接收到的单光子计数,且所述实际晶体与所述虚拟晶体在对应所述扫描位置时与所述 扫描位置的相对位置关系相同。11. 根据权利要求9所述的装置,其特征在于, 所述获得模块,具体用于在利用所述实际晶体的单光子计数率得到所述实际晶体的晶 体接收效率的过程中,在不同剂量下,根据所述实际晶体的单光子计数率,以及单光子计数 率与晶体接收效率之间的函数关系,得到所述实际晶体的晶体接收效率,所述函数关系是 根据不同剂量下计算的晶体接收效率得到;或者,在同一剂量下,获得所述实际晶体的单光 子计数率与所有实际晶体的单光子计数率的均值之间的比值,并将所述比值作为所述晶体 接收效率。12. 根据权利要求8所述的装置,其特征在于, 所述处理模块,具体用于在利用实际晶体的晶体接收效率对所述延迟随机符合数据进 行去噪声处理,得到去噪声处理后的随机符合数据的过程中,确定响应线上的两个虚拟晶 体、以及所述两个虚拟晶体在所述响应线上对应的各个实际晶体,并获取所述各个实际晶 体的晶体接收效率;根据所述各个实际晶体的晶体接收效率,得到所述两个虚拟晶体的晶 体对接收效率,并利用所述晶体对接收效率对所述延迟随机符合数据进行去噪声处理,得 到去噪声处理后的随机符合数据。13. 根据权利要求12所述的装置,其特征在于, 所述处理模块,具体用于在根据所述各个实际晶体的晶体接收效率,得到所述两个虚 拟晶体的晶体对接收效率的过程中,针对所述响应线上的虚拟晶体i和虚拟晶体j,根据所 述虚拟晶体i在所述响应线上对应的m个实际晶体的晶体接收效率、所述虚拟晶体j在所述 响应线上对应的m个实际晶体的晶体接收效率,得到所述虚拟晶体i和所述虚拟晶体j的晶 体对接收效率。14. 根据权利要求13所述的装置,其特征在于, 所述处理模块,具体用于在利用所述晶体对接收效率对所述延迟随机符合数据进行去 噪声处理,得到去噪声处理后的随机符合数据的过程中,根据包含虚拟晶体j的一组虚拟晶 体的集合a、包含虚拟晶体i的一组虚拟晶体的集合b、虚拟晶体i和属于集合b的虚拟晶体1 的晶体对接收效率、虚拟晶体j和属于集合a的虚拟晶体k的晶体对接收效率、虚拟晶体1和 虚拟晶体k的晶体对接收效率,对虚拟晶体i和虚拟晶体1对应的延迟随机符合数据、虚拟晶 体j和虚拟晶体k对应的延迟随机符合数据、虚拟晶体1和虚拟晶体k对应的延迟随机符合数 据,进行去噪声处理,得到去噪声处理后的虚拟晶体i和虚拟晶体j的随机符合数据。
【文档编号】g06t5/00gk106023278sq201610355835
【公开日】2016年10月12日
【申请日】2016年5月25日
【发明人】刘勺连, 孙智鹏, 李运达
【申请人】沈阳东软医疗系统有限公司
相关技术
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
网站地图